Geology of the Ozarks and its Lead-
Zinc Deposits

Jim Palmer



Terms

Mississippi Valley type deposit (MVT) ores are
primarily Zinc-Lead, less commonly Lead-Zinc.
Southeast Missouri Bonneterre ores are uncommon as
Lead-Zinc-Copper MV'T deposits.

The most common sulfide minerals in MVT deposits
are sphalerite, galena, chalcopyrite, pyrite-marcasite.



Terms

Aquifers are rocks capable of transmitting groundwater
such as sandstone and porous dolomites. Many of the
aquifers contain traces of ore minerals. Most aquitards are
shaley formations that restrict groundwater flow.

Southeast Missouri MVT ore host rocks have mostly been

altered to dolomite (CaMgCOC3), from limestone which
are calcite (CaCO3).



Summary 1

The sequence of rocks from Precambrian to Pennsylvanian are a
series of aquifers and aquitards. The principal host rocks are
dolomites in the Bonneterre Formation

The accumulation of Paleozoic sediments followed a long period
of weathering and erosion of Precambrian rocks.

During lead-zinc mineralization, metals-bearing brines flowed
through porous rocks. Where aquitards were absent these
brines had potential to flow upward into porous host rocks.



Summary 2

In the Central and Eastern United States, mineralization
followed the development of the Appalachian and
Ouachita mountains and their adjacent basins.

The fluids derived from these basins were oil field brines.

Ores precipitated from sulfur- and metal-bearing brine
into porous host rocks.



GENERALIZED GEOLOGIC MAP
OF MISSOURI

Ozarks Stratigraphy

PE NNSYLVAN IAN MISSOURI DEPARTMENT OF NATURAL RESOURCES
Paleozoic formations =
gently dip a few degrees —
away from the Ozark i TR CAMBRIAN
Dome. 15 fie e
M I SSI S SI PPIAN _‘f"‘"’" »", ¥ o . ; ¢ : : Ordovician
HENRY oo, | uoqu}'L‘T'aLE ; l mg&uu P D Combrisy
Cambrian and Ordovician - o “'“TfT#a | g v o
: : w2 et g
rocks are mostly dolomites NNy LT T Toen (o e
with lesser limestones. E;,. FREL ] OZARK DEME T
These are the most i | N 1 b
important aquifers. i 4?} P
ORDOVICIAN _AwnlpY




Southeast Missouri Pb-Zn-Cu Host Rocks
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St. Francis Mountains Area Geology

Virtual Geology Field Tour
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St. Francis Mountains Area Geology
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Precambrian Erosional Topography
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St. Francis Mountains Area Geology
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INDIAN CREEK-MINE
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Mine Lamotte

Lead was found at what would become Mine Lamotte about 1723
by Philip Francis Renault and M. La Motte, at the head of the St.
Francois River.

Renault had left France in 1719 with 200 artificers and miners,
and acquired 500 slaves in St. Domingo to work the ore deposits.
Galena was mined and smelted from several diggings in the
region, but in 1731 Renault lost his concessions.

Mining at Mine Lamotte in bedrock ended in 1959, and had
produced 325,000 tons of lead. 239 years after the initial
discovery of lead mined from the soil.

Winslow, 1984; Kiilsgard and others, 1967



Mine Lamotte
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Historic Mine Lamotte Production Summary
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The sales of this lead at prices prevailing during the various periods must have yielded very
nearly ten millions of dollars.

Winslow, 1894
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St. Francis Mountains Area Geology
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Bonneterre Dolomite Lithology

e T

Fossil grain in fine dolomite Lyle, 1977



Cambrian Davis Formation - Aq uitard
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Lead Belt Host Rocks

Kisvarsanyi, 1977; Lyle, 1977; Myers, 1969; Palmier and others, 2012 ™ o
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Disseminated Galena in Oolitic Dolomite

Evans, 1977; Kisvarsanyi, 1977
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VBT Host Rocks

Dolomite Breccia with Galena Matrix Ore

Davis, 1977; Kisvarsanyi, 1977
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Intense dissolution of dolomite was

Collapse Brecc1as and MVT Deposits
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Sweeney, Harrison and Bradley, 1977

localized, creating open voids and
fracturing to develop in the
overlying rocks.

Breccias are composed of rocks in

~ ., the dissolution zone and down-
/-7 dropped blocks from the overlying
= beds including the Davis

Formation.

Mineralization commonly is more
intense at the margins of the
breccias



Collapse Brecciasand MV'T Deposits
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Consistent Order of Minerals

The sequence of
minerals is
consistent
throughout the
southeast
Missouri Pb-

Zn-Cu deposits.




Mineralization Order
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Lithosphere Thickness-Sediment Hosted Ore Deposits
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Lead and Zinc - Central United States
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Formation of MVT Deposits
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Formation of MV'T Deposits
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Summary 1

The sequence of rocks from Precambrian to Pennsylvanian are a
series of aquifers and aquitards. The principal host rocks are
dolomites in the Bonneterre Formation

The accumulation of Paleozoic sediments followed a long period
of weathering and erosion of Precambrian rocks.

During lead-zinc mineralization, metals-bearing brines flowed
through porous rocks. Where aquitards were absent these
brines had potential to flow upward into porous host rocks.



Summary 2

In the Central and Eastern United States, mineralization
followed the development of the Appalachian and
Ouachita mountains and their adjacent basins.

The fluids derived from these basins were oil field brines.

Ores precipitated from sulfur- and metal-bearing brine in
porous host rocks.



Global MVT Deposits

Eclipse
Polaris/  Nanisivik Blyklippen Pavlovskoye
- Gayna River ! Nunngarut YXIBR V!
R”'R'dgeGozCree 7eaErIw1t \J " \.Black Angel & Urultun
\ sker
\\ ~— Sardana
\ ) . 5
\ %-Prairie Creek ’ 1 Schmalgraf Bleiberg l
Pine Point Monarch-Kicking Hors& Ne;vfound land Zinc Irish Midland Lafa‘sc'ha,m Unpor Sitesia
Robb Lake o/ aon ays ves A ezlc __Sedmochislenitsi
i Jubilee Cevennes GO Vahyali -Vejin Sumsar
Mexanm_xnf Vlburnum Tl'emfnedensvﬂ .;Vahu Reou g a v|ar;n£un'jllreh ejin Guanmens!]:n
Shem,aﬂc &iLeRﬂ sgnenvllireton Picos de Euroga;, Vmﬁ"vesmebba Emara}: Mehdiabad Kuangshanchang
Upper Mississippi Valley Fedj-el Adoum Huayuan
e Tri Stla\ Ce“::-ﬁ“?e::g:;gn City 1oyissit-Bou Beker £ El Abe Boul gnndJmm Gheig o= 'Kuh-e-Surmeh Tianbaoshan Fuay
North-Arkansas Boukdema-Kef igmlalala\ ou Jabeur g¢ Daliang#l II,_Fankou
in @\ it i
Khorzet Youlcef Jabal Dhaylan Qilinchang ouhongqgiao
L] L]
Florida Canyon h d d f 1
L/ s vincante R I'he demand for 1ron, aluminuim,
¢ Januaria J
Tres| d 1 l
rgunais morois COPPET, lead zinc and nickel is
EXPLANATION
% Districts
* Deposits (Cambrian and younger) expected to increase 2-6 times
®m Deposits (Proterozoic and older) ? .
(12x?) by 2100. (Watari, 2021)

Leach and others, 2010



e
o
&
]
=
@
3
g
2
. Cobalt Demand
Iron and steel Aluminum
50001 N=40 | ] 501 N=4s g8
000 ' 400
3,000 : o | 300 A2
§” Y - e 5
g - '
2 2000 ] /él ' 200 | 1
0 0
200 0
Copper Zinc
175 35 2020 2030 2040 2030 2040
N=72 N=10
150 30
125 | 2 p‘ 2500

2500 kT

o ? /// - ' - Other Sectors
25 /“'

e — B Lithium Demand

251 N=11 B 51 N=18
8

1000

~ EV’sand Storage

1
3
E} » | e /
2 10 ol . 2
5 1
960 1980 2000 2020 2040 2060 2080 2100 960 1980 2000 2020 2040 2060

IEA, 2020; Watari and others 2021

T T
2018 2050 - Sustainable 2050 - Faster Innovation
Development Scenario Case




Annual demand (Mt/yr)
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Meeting primary demand in the SDS requires strong growth in investment to bring forward new
supply sources over the next decade

Committed mine production and primary demand for selected minerals
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Cobalt Production
by Country

The Democratic
Republic of the Congo
is the primary
producer of cobalt.
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Figure F4. Pie chart showing percentage of world cobalt

mine production in 2011, by country. The sources of production

are cobalt, copper, nickel, platinum-group-element, and zinc

operations. Data are from Shedd (2013a). Congo (Kinshasa) is a

short-form name for Democratic Republic of the Congo.
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Summary Metals Demand

Expect up to 12x demand by 2100 for critical
elements/minerals, including base metals

Demand will outpace current mine capacity, hundreds
of mines per year are needed - which is an impossible
goal

Majority of future geologically reasonable targets will
be expensive and in politically unstable or
environmentally sensitive areas



